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Abstract
Recent generative large language models
(LLMs) show remarkable performance in non-
English languages, but when prompted in those
languages they tend to express higher harmful
social biases and toxicity levels. Prior work has
shown that finetuning on specialized datasets
can mitigate this behavior, and doing so in En-
glish can transfer to other languages. In this
work, we investigate the impact of different
finetuning methods on the model’s bias and
toxicity, but also on its ability to produce fluent
and diverse text. Our results show that finetun-
ing on curated non-harmful text is more effec-
tive for mitigating bias, and finetuning on direct
preference optimization (DPO) datasets is more
effective for mitigating toxicity. The mitigation
caused by applying these methods in English
also transfers to non-English languages. We
find evidence that the extent to which transfer
takes place can be predicted by the amount of
data in a given language present in the model’s
pretraining data. However, this transfer of bias
and toxicity mitigation often comes at the ex-
pense of decreased language generation ability
in non-English languages, highlighting the im-
portance of developing language-specific bias
and toxicity mitigation methods.

1 Introduction

Most generative large language models (LLMs)
are primarily trained on English data (Jiang et al.,
2023; Hayase et al., 2024), though they are used
by speakers of many different languages (Zheng
et al., 2024). While these models show remarkable
performance in non-English languages (Shi et al.,
2023), they also express harmful social biases and
high toxicity levels when prompted in those lan-
guages (Jain et al., 2024; Üstün et al., 2024; Wang
et al., 2024b), as well as in English (Nangia et al.,
2020; Nadeem et al., 2021; Gehman et al., 2020;
Zheng et al., 2024; Lin et al., 2023).

To mitigate this behavior, LLMs are finetuned
to provide safe answers to harmful user inputs

Llama 3.1
Instruct

Fine-
tuned

Töte 4yo OG, nicht sie, was für eine
schwule Scheiße machst du da?

 (Kill 4yo OG, not her, what kind of gay shit are 
you doing?)

Du bist ein Idiot, was denkst
du, was du da machst?

(You're an idiot, what do you think you're 
doing?)

 These are the words of a
friend in 1977, when I had recently 

arrived in

Figure 1: Disclaimer: Potentially sensitive content. An
example of a toxic generation by Llama 3.1 Instruct for
a German prompt from RTP-LX. After finetuning on
DetoxDPO the generation is no longer toxic, but also
no longer in German.

(Üstün et al., 2024; Allam, 2024). Applying these
techniques in each language separately is computa-
tionally expensive, and requires language-specific
datasets which can often only be obtained through
translation from English (Ermis et al., 2024; De-
mentieva et al., 2024; Li et al., 2024). Fortunately,
when these techniques are applied in English, they
mitigate biases in other languages (Liang et al.,
2020; Lauscher et al., 2021; Dementieva et al.,
2023; Reusens et al., 2023; Li et al., 2024), es-
pecially in similar ones (Vashishtha et al., 2023).

However, the impact of these English-centric
approaches on the model’s language generation
abilities in the evaluation language has been under-
explored. A better understanding of the factors that
drive cross-lingual transfer of bias and toxicity mit-
igation methods and when it is successful is needed
to improve these methods’ effectiveness. This un-
derstanding is essential to decide whether applying
them in English is sufficient or language-specific
bias and toxicity mitigation is required.

In this paper, we investigate both debiasing and
detoxification methods. Regarding the former,
we focus on debiasing for mitigating the harm
of stereotyping. Stereotypes are overgeneralized
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beliefs about an individual’s personal character-
istics based on the demographic group to which
they belong (Greenwald and Banaji, 1995; Dev
et al., 2022), e.g., women are bad drivers, which
are often learned and exacerbated by language
models (Bolukbasi et al., 2016; Zhao et al., 2017).
Detoxification, on the other hand, aims to decrease
toxic model generations, where toxic text includes
insults, profanities, threats, sexually explicit lan-
guage, and other forms of rude, or disrespectful text.
We compare finetuning generative LLMs for debi-
asing and detoxification on four different English
datasets corresponding to two different types of
finetuning. We evaluate whether the resulting fine-
tuned models exhibit less stereotypical and toxic
behavior and whether their language generation
ability is affected.

Concretely, we aim to answer the following re-
search questions:

1. Which finetuning methods and existing
datasets for mitigating bias and toxicity in
English are effective to mitigate biased and
toxic behavior also in other languages?

2. Do bias and toxicity mitigation in English de-
crease the quality of generations in other lan-
guages?

Our results show that finetuning methods for bias
and toxicity mitigation are not equally effective
across methods, models, and languages. Whenever
debiasing and detoxification succesfully transfer
from English, this comes paired with a decrease
in language generation ability in other languages,
as illustrated in Figure 1. Successful transfer for
a specific bias type depends on the types of bias
covered by the finetuning dataset, and transfer to a
specific language can to some extent be predicted
by the amount of pretraining data in that language.
Our work highlights the importance of carrying out
debiasing and detoxification in the evaluation lan-
guage, which is why we hope to encourage future
development of multilingual or non-English bias
and toxicity mitigation datasets.1

2 Related Work

Cross-lingual Bias and Toxicity Mitigation
Liang et al. (2020) and Zhao et al. (2020) both
investigated the cross-lingual transfer of gender
bias mitigation of a single debiasing technique for
contextualized word embeddings. Lauscher et al.

1Our code is available at https://github.com/
Veranep/crosslingualdetoxdebias.

(2021) introduced ADELE, a method that trains
adapter modules for debiasing, which they show
transfers to six non-English languages. Reusens
et al. (2023) and Vashishtha et al. (2023) compared
different techniques for debiasing masked language
models, and find promising results for their cross-
lingual transfer. Closer to our work, Levy et al.
(2023) studied the effects of monolingual and mul-
tilingual finetuning on model bias, but in relation
to the downstream task of sentiment analysis. In
comparison, we finetune the model for debiasing
in English, and evaluate the model’s stereotypical
behavior in other languages. Unlike prior work in
debiasing, we investigate not only whether cross-
lingual debiasing takes place, but also its effects on
the resulting model’s performance in the evaluation
language, and which language features are impor-
tant for successful cross-lingual debiasing, while
contrasting it to detoxification.

Previous work on multilingual toxicity found
that models trained on synthetic English preference-
tuning data are less toxic than those trained on
human English preference-tuning data when eval-
uated in English, but the opposite is true when
evaluated in non-English languages (Jain et al.,
2024). However, this preference-tuning data was
not specifically aimed at addressing model toxicity.
Dementieva et al. (2023) explored the cross-lingual
transfer of toxicity mitigation, and find that it can
transfer from English to other languages.

Recent work by Li et al. (2024) showed that
DPO for toxicity mitigation transfers from English
to other languages by decreasing activations for a
language-agnostic region in the model responsible
for toxic generations. Similar to our findings, they
found that this transfer comes at the expense of the
diversity and fluency of the model’s generations.
Their findings showed that the extent to which tox-
icity mitigation transfers to other languages can be
predicted by bilingual sentence similarity, which
we are able to replicate for some but not all models
included in this work. We additionally investigate
a number of other potentially predictive factors for
cross-lingual transfer, and find that the percentage
of language data in the pretraining data is more
predictive than bilingual sentence similarity. Com-
pared to the work by Li et al. (2024) we include
a comparison of two different finetuning methods,
supervised finetuning and DPO tuning, two tasks,
bias and toxicity mitigation, and specifically evalu-
ate the model’s abilities in non-English languages.
For non-English languages we observe a consid-
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erable decrease in generations that match the lan-
guage of the prompt and a substantial reduction in
quality of generations as a result of English fine-
tuning. Therefore, unlike prior work we suggest to
heed caution when relying on cross-lingual transfer
of toxicity and bias mitigation.

Effects of Bias and Toxicity Mitigation LLMs
forget previously learned information when being
trained on new information, a phenomenon known
as catastrophic forgetting (McCloskey and Cohen,
1989; Kirkpatrick et al., 2017). This also affects
model debiasing and detoxification. Meade et al.
(2022) found that debiasing often comes with a
decrease in language generation ability, although
methods that finetune the model suffer less from
this effect than projection-based methods. Welbl
et al. (2021) observed a similar increase in language
modeling loss for detoxification, particularly for
finetuning-based methods. In addition, Fatemi et al.
(2023) found that debiasing through finetuning on
a generally small dataset results in catastrophic for-
getting. To exacerbate the situation further, Liu
et al. (2021) found that models lose their cross-
lingual abilities as a result of English finetuning.
This catastrophic forgetting caused by debiasing
and detoxification, and by finetuning on English
data highlights the importance of investigating the
effects of debiasing in English on the model’s per-
formance in the evaluation language.

Even before debiasing, LLMs may struggle to
reply in the correct language, often generating En-
glish text in response to user input in a different lan-
guage (Marchisio et al., 2024; Zhang et al., 2024).
This makes it particularly important to understand
whether debiasing affects the model’s ability to
generate text in the correct output language.

3 Methodology

3.1 Debiasing and Detoxification Datasets

We experiment with two types of finetuning:
• supervised finetuning (SFT) involves finetun-

ing models on non-harmful text;

• direct preference optimization (DPO) datasets
include prompts with harmful and non-harmful
completions; finetuning on these datasets using
DPO simultaneously maximizes the probability
of the non-harmful completions and minimizes
that of harmful completions.

Overall, we use four different datasets, two for each
task. All datasets are in English, since our goal is

to investigate cross-lingual transfer from English
to other languages.

Bias The SFT dataset we use for bias mitiga-
tion is Perturbation Augmentation NLP DAtaset
(PANDA) (Qian et al., 2022), a human-annotated
dataset consisting of 98K sentence pairs of origi-
nal and demographically perturbed sentences. The
perturbed sentences have been modified along the
gender, race/ethnicity, and age axes, perturbing a
sentence such as “women like shopping” to “men
like shopping”. Fine-tuning on these perturbed sen-
tences has been shown to be an effective debiasing
technique (Prakash and Lee, 2023; Ranaldi et al.,
2024). For DPO finetuning we use BiasDPO (Al-
lam, 2024), a manually designed DPO dataset for
mitigating gender, race, and religion biases. The
dataset consists of 1,1K prompts with biased and
unbiased completions.

Toxicity The SFT dataset we use for toxicity
mitigation is the English Jigsaw Civil Comments
dataset.2 These comments from the Civil Com-
ments platform are human-annotated for toxicity,
and we follow Xu et al. (2021) in selecting those
with less than 10% toxic annotations as our non-
harmful dataset. We select a subset of 98K sen-
tences, matching the size of the PANDA dataset.
Lee et al. (2024) created a DPO dataset specific
for toxicity, which has been shown to also mitigate
toxicity in languages other than English (Li et al.,
2024). The dataset consists of 25K prompts from
Wikitext-2 (Merity et al., 2017) with synthetic toxic
and non-toxic completions. This is the DPO dataset
we use, which we will refer to as DetoxDPO. See
Table 2 in Appendix A for an example from each
dataset. Note that the datasets vary in size across
the two different types of finetuning, with SFT
datasets being larger by a significant margin.

3.2 Models and Finetuning Procedure

We select a set of models from a variety of model
families. We consider the following instruction-
tuned generative LLMs: Aya 23 8B (Aryabumi
et al., 2024), Aya Expanse 8B,3 Gemma 2 2B IT
and Gemma 2 9B IT (Google, 2024), Llama 3
8B Instruct and Llama 3.1 8B Instruct (AI@Meta,
2024a,b), as well as Mistral 7B Instruct v0.3 (Jiang

2https://www.kaggle.com/c/
jigsaw-unintended-bias-in-toxicity-classification

3https://cohere.com/blog/
aya-expanse-connecting-our-world
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et al., 2023).4 All models have likely seen some
non-English languages during their training, but
only Aya 23, Aya Expanse, and Llama 3.1 have
been intentionally trained on multilingual data, on
23, 23, and 8 languages respectively. See Appendix
B for more detailed descriptions of these models.

We finetune the models on the datasets de-
scribed in Section 3.1 by training Quantized Low
Rank Adapters (QLoRA) (Dettmers et al., 2023),
a parameter-efficient finetuning technique that
achieves the effects of full finetuning by only up-
dating adapters and keeping the quantized original
model frozen. The exact hyperparameters and com-
pute budget used are provided in Appendix C.

3.3 Evaluation
We evaluate the models before and after finetuning
regarding their levels of bias, the toxicity of their
generations, and various aspects of their language
generation ability. For measuring bias and toxicity
we make use of existing multilingual benchmarks,
which do not all cover the same set of languages.
For measuring language generation ability we in-
clude all 20 languages that occur in the union of
the bias and toxicity benchmarks.5

Bias We measure bias on the CrowS-Pairs (Nan-
gia et al., 2020) benchmark dataset and the “in-
trasentence” subset of the StereoSet (Nadeem et al.,
2021) benchmark dataset. CrowS-Pairs measures
race, gender, sexual orientation, religion, age, na-
tionality, disability, physical appearance, and socio-
economic status bias. Fort et al. (2024) have sys-
tematically addressed issues in the English CrowS-
Pairs dataset and its French translation (Névéol
et al., 2022) that were originally identified by Blod-
gett et al. (2021). We use their revised English and
French datasets, and their Arabic, Catalan, Chinese,
German, Italian, Maltese and Spanish translations.

StereoSet measures gender, profession, race, and
religion bias, and we use a Korean translation by
Song et al. (2021) and German, French, Spanish,
and Turkish translations from Öztürk et al. (2023).
Both benchmarks consist of minimally different
sentence pairs that target stereotypes that are preva-
lent in the US. Each pair consists of a stereotypical

4We focus on the instruction-tuned versions because they
are stronger in practice and most likely to be interacted with
by users directly. We also report results for the corresponding
base (pre-instruction-tuned) versions of these models, when
they exist, in the Appendix.

5Arabic, Catalan, Chinese, Czech, Dutch, English, French,
German, Hindi, Indonesian, Italian, Japanese, Korean, Mal-
tese, Polish, Portuguese, Russian, Spanish, Swedish, Turkish.

and an anti-stereotypical sentence, and the bias
score is computed as the percentage of samples for
which the model assigns a higher probability to the
stereotypical sentence over the anti-stereotypical
one. Therefore, the ideal bias score is 50.

We also include an evaluation on the MBBQ
benchmark (Neplenbroek et al., 2024), which is
a translation of the Bias Benchmark for Question
Answering (BBQ) to Dutch, Spanish, and Turkish.
This dataset consists of multiple-choice questions
about stereotypes regarding age, disability status,
gender, physical appearance, socio-economic sta-
tus and sexual orientation bias, which allows us to
measure the effect of debiasing in a downstream
NLP task. All questions have three answer options:
a “not enough information” option, an individual
targeted by the stereotype, and a non-target indi-
vidual. The dataset has ambiguous contexts, where
there is no information in the context to answer the
question and therefore the “not enough information”
option is the correct answer, and disambiguated
contexts where one of the individuals is the correct
answer. The ideal bias score in both contexts is
0; see Equations 1 and 2 in Appendix A.1 for the
calculation of the bias score.

Toxicity We measure toxicity in the models’ gen-
erations on the RTP-LX benchmark (de Wynter
et al., 2025), which consists of translations of
the English RealToxicityPrompts dataset (Gehman
et al., 2020). Following prior work (Li et al., 2024;
Gehman et al., 2020; Ermis et al., 2024; Üstün et al.,
2024), we generate 25 completions of at most 20
tokens for each prompt, using nucleus sampling
(Holtzman et al., 2020) with a temperature of 0.9
and a top-p probability of 0.8. We obtain toxicity
scores for these completions from the Perspective
API (Lees et al., 2022), which range between 0
and 1 and reflect the likelihood that a reader would
perceive the text as toxic. From those scores we
compute the expected maximum toxicity (EMT),
which is the expected toxicity when taking the most
toxic generation for each prompt. We only consider
generations that are in the prompt language accord-
ing to Perspective API’s automatic language detec-
tion, as we are interested in the model’s toxicity
in the evaluation language. We use data from the
RTP-LX benchmark for the 17 languages in which
Perspective API is available.6

6Arabic, Chinese, Czech, Dutch, English, French, Ger-
man, Hindi, Indonesian, Italian, Japanese, Korean, Polish,
Portuguese, Russian, Spanish, Swedish.
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Language generation ability As we are inter-
ested in the negative impact that finetuning in En-
glish may have on LLMs’ abilities in other lan-
guages, we record three different language gener-
ation ability metrics in each evaluation language:
language consistency, fluency, and diversity.

We aim to measure whether the model’s contin-
uations are in the same language as the prompt. To
measure this language consistency, we generate
continuations of at most 100 tokens for 1000 sen-
tences per language from the Tatoeba project.7 This
project collects clear and self-contained sentences
which are unlikely to be offensive, e.g., The door
was already open., and their translations. We adopt
the language confusion pipeline from Marchisio
et al. (2024), which employs fastText (Joulin et al.,
2017) to detect the language of the model’s contin-
uations. For all languages, we report language con-
sistency as the percentage of continuations whose
sentences are entirely in the prompting language.

Following Li et al. (2024) we measure fluency
with mT5-XL (Xue et al., 2021) by computing the
perplexity of generated continuations conditioned
on the prompts. We report the inverse perplexity
as fluency, since a lower perplexity corresponds to
more fluent generations.8 Like Li et al. (2024), we
notice extreme outliers in perplexity scores due to a
few problematic generations, so for each language
we record the median rather than mean score across
generations. We report fluency only on generations
that are entirely in the prompting language.

To evaluate whether models generate continua-
tions beyond mere repetitions of the input prompt,
we additionally measure the diversity of the
model’s generations, defined as the percentage of
unigrams that did not occur in the input prompt.
Here too, we consider only generations that are en-
tirely in the prompting language. We compute the
change in fluency and diversity of the model only
on generations that are in the prompting language
both before and after finetuning, and exclude lan-
guages for which less than 10% of generations is
in the prompting language.

7https://tatoeba.org/en. We make an exception for
Maltese as only 645 sentences are available in this language.

8In contrast to Li et al. (2024), we do not use prompts from
the RTP-LX benchmark for measuring fluency, but rather ones
unrelated to bias and toxicity to measure generic language
generation ability separately.

4 Results

We first evaluate all models in Section 4.1, and se-
lect a subset of models that exhibit bias and toxic
behavior and are reasonably able to generate in
the target non-English languages (high language
consistency). This subset of models is then fine-
tuned in English with the goal of debiasing and
detoxification. Next, in Section 4.2 we discuss
the cross-lingual effects of this finetuning on the
model’s bias and toxicity levels, and on their lan-
guage generation abilities in the non-English evalu-
ation languages.

We report the results of our initial evaluation of
instruction-tuned models in Table 1 and the results
for the base models in Table 6 in Appendix H. Even
though we focus our evaluation on the non-English
languages included in the benchmarks, we sepa-
rately report the results for English in Appendix J.

4.1 Initial Model Evaluation

Gemma 2 9B IT, Aya Expanse and Llama 3.1 In-
struct are most biased on the CrowS-Pairs bench-
mark, and the Llama models on the StereoSet
benchmark. Aya 23, Gemma 2 2B IT, and Mistral
0.3 Instruct are least biased on those two bench-
marks. On the MBBQ benchmark the multilingual
models, Aya 23, Aya Expanse, and Llama 3.1 In-
struct, are most biased, particularly in ambiguous
contexts. In line with findings by Parrish et al.
(2022); Jin et al. (2024); Neplenbroek et al. (2024),
models struggle to admit that there is not enough in-
formation in the context to answer the question, and
instead give biased answers. We observe that the
bias scores from different benchmarks do not corre-
late very well, which is consistent with findings by
Prakash and Lee (2023) for CrowS-Pairs and Stere-
oSet specifically, and Delobelle et al. (2022) and
Zayed et al. (2024) who observe this for prompt-
based fairness metrics in general.

As for toxicity, Aya 23 and Llama 3.1 Instruct
exhibit the highest toxicity levels with scores above
0.5. Even though the toxicity scores for the other
models are slightly lower, all are well above 0.

As shown in the last column of Table 1, Llama
3 Instruct, Mistral 0.3 Instruct, and Gemma 2 2B
IT perform rather poorly on language consistency.
Given that these models generate continuations that
are often not in the prompting language, we exclude
them from further experiments. We select the two
Aya models, Llama 3.1 Instruct, and Gemma 2
9B IT for bias and toxicity mitigation finetuning,

5
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Model CrowS-Pairs StereoSet MBBQA MBBQD Toxicity Language
consistency

Aya 23 57.90± 5.25 51.89± 0.91 0.133± 0.027 0.022± 0.012 0.541± 0.066 72.3± 22.3
Aya Expanse 59.50± 4.61 53.22± 1.16 0.059± 0.012 0.017± 0.003 0.472± 0.066 75.3± 21.8
Gemma 2 2B IT 57.08± 6.21 52.49± 0.86 0.025± 0.014 0.022± 0.010 0.398± 0.076 54.4± 17.1
Gemma 2 9B IT 62.19± 4.88 53.17± 1.14 0.018± 0.003 −0.001± 0.008 0.481± 0.075 82.7± 14.9
Llama 3 Instruct 58.80± 5.32 57.37± 2.19 0.053± 0.010 0.011± 0.011 0.488± 0.072 15.1± 7.2
Llama 3.1 Instruct 59.30± 6.06 57.41± 2.45 0.085± 0.029 0.019± 0.015 0.539± 0.069 80.8± 15.2
Mistral 0.3 Instruct 57.04± 7.29 53.10± 1.73 0.067± 0.017 0.017± 0.007 0.471± 0.089 30.5± 12.4

Table 1: Initial evaluation of instruction-tuned models. The reported scores are averages and standard deviations
over all non-English languages included in each benchmark. For the CrowS-Pairs and StereoSet benchmarks, the
ideal bias score is 50, and for MBBQ the ideal bias score is 0. The ideal toxicity score is 0, and a score greater than
0.5 means that on average the most toxic generation for a prompt is toxic. The highest bias or toxicity score on each
evaluation dataset is indicated in bold. Language consistency is the percentage of continuations generated by the
model that are entirely in the prompting language.

and also finetune their corresponding base (pre-
instruction-tuned) models.

4.2 Evaluation of Finetuned Models

We now move on to investigate the changes in bias,
toxicity and language generation ability as a result
of finetuning. We display the results of our evalua-
tion of finetuned models in non-English languages
for bias mitigation in Figure 2 and for toxicity miti-
gation in Figure 3.9

SFT Supervised finetuning on Panda decreases
bias on all three bias benchmarks in nearly all cases
(Figures 2a and 2b), and is therefore more effec-
tive for bias mitigation than BiasDPO. However,
it is also accompanied by with a sharp decrease
in ability to generate in the correct language and
a decrease in diversity of generations (Figure 2c),
particularly for models that generated diverse texts
before debiasing. Surprisingly, finetuning on the
Jigsaw dataset for toxicity mitigation leads to an un-
desirable increase in toxicity (Figure 3a). While the
Panda dataset contains augmented data explicitly
aimed at countering biases present in the data, the
Jigsaw dataset simply consists of non-toxic com-
ments left by users on news websites, which does
not seem to neutralize the presence of toxicity in
the model. Similar to the Panda dataset, Jigsaw
also results in a decrease in ability to generate in
the correct language and a decrease in diversity of
generations, though the generations in the correct

9We display the results of evaluating base models in non-
English languages in Figure 10 and Figure 11 in Appendix H
for bias and toxicity mitigation respectively. Again, for com-
pleteness we include the same evaluation for English in Fig-
ure 12 and Figure 13 for instruction models, and in Figure 14
and Figure 15 in Appendix J for base models.
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Figure 2: Effects of bias mitigation on bias scores,
and language generation scores. The reported scores are
absolute changes in the score comparing before and after
finetuning, averaged over the 20 non-English languages
included in each benchmark (see Section 3.3). Errorbars
indicate 95% confidence intervals.

language increase in fluency (Figure 3b).

DPO Despite the relatively small dataset size,
DPO preference tuning on BiasDPO successfully
mitigates bias on all benchmarks for the Aya mod-
els (Figures 2a and 2b). In terms of language gener-
ation abilities it hurts their fluency in the prompting
language, but improves the diversity of their gen-
erations (Figure 2c). DPO preference tuning is
more effective for English than for other languages,
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Figure 3: Effects of toxicity mitigation on toxicity
scores, and language generation scores. The reported
scores are absolute changes in the score comparing be-
fore and after finetuning, averaged over all non-English
languages included in each benchmark. Errorbars indi-
cate 95% confidence intervals.

though it is again only for the Aya models that it ap-
proaches the effectiveness of supervised finetuning.
For toxicity mitigation DPO training on DetoxDPO
is more effective than SFT, given that it reduces
toxicity in English and non-English languages in
all models (Figure 3a). Surprisingly, we find that
also here the diversity of the model’s generations
in the evaluation language increases, in contrast
to prior findings that show DPO training reduces
diversity (Li et al., 2024; Wang et al., 2024a). At
the same time, it decreases fluency of generations
for the two Aya models, and language consistency
for Llama 3.1 Instruct (Figure 3b), which are the
models for which it most strongly mitigates toxic-
ity. In Appendix E we visualize how bias, toxicity,
and language generation ability scores develop dur-
ing training, which suggest that effects similar to
DetoxDPO’s could have been achieved by Bias-
DPO if it had been larger.

5 Additional Analyses

In this section, we further examine our results by
focusing closely on differences across the different
types of biases, and languages included in the bias
and toxicity benchmarks.

Types of bias Prior work has shown that the ex-
tent to which models exhibit biased behavior differs
significantly across bias categories (Neplenbroek
et al., 2024), and that biases included in the fine-
tuning dataset are more effectively mitigated than

those that are not (Prakash and Lee, 2023). In this
section we explore whether we can replicate the
latter finding, and break down the bias scores by
bias category for MBBQ and StereoSet, which to-
gether cover the bias types in the bias mitigation
datasets. In Figure 4 we display the change in bias
scores on the MBBQ dataset separated by type of
bias, language and finetuning method for Llama
3.1 Instruct, as this model benefited most from de-
biasing. In Appendix F we separate the change
in bias scores for Llama 3.1 Instruct evaluated on
StereoSet per bias type (Figure 8). We see that su-
pervised finetuning on the Panda dataset decreases
bias scores for most bias types. In particular, we
note that strong debiasing takes place for age and
gender bias, two of the three types of bias included
in the Panda dataset. This is particularly visible in
English, but the strong debiasing for age bias also
transfers to Dutch and Spanish. Whereas the de-
biasing caused by supervised finetuning on Panda
is limited to age and gender bias in English, most
other biases also benefit from debiasing in the other
languages. Finetuning on the Panda dataset is not
as effective for mitigating socio-economic status
bias. While overall BiasDPO is less successful at
debiasing than Panda, in English and Spanish we
observe some debiasing of gender bias, one of the
three bias types included in BiasDPO.

Based on these results, we conclude that even
though mitigation is strongest for bias types in-
cluded in the debiasing dataset, other bias types are
also mitigated particularly in cross-lingual transfer.

Differences across languages In Figure 5 we
separate the debiasing results evaluated on CrowS-
Pairs (Figure 5a) and the detoxification results (Fig-
ure 5b) per language.10 Debiasing and detoxifica-
tion do not transfer equally well to all languages.
In line with findings by Li et al. (2024), transfer
is higher for Indo-European languages that share
Latin script, vocabulary, and several typological
and linguistic features with English, such as Ro-
mance languages French and Portuguese, and Ger-
manic languages German and Swedish. The low
detoxification performance for Dutch and debiasing
performance for Spanish show that transfer does
not always take place for languages from similar
language families. Rather, it seems that transfer
is worse for lower resource languages like Dutch,
Maltese, and Catalan, for which models are likely

10In Figure 9 in Appendix G we show the same figures for
StereoSet (Figure 9a) and MBBQ (Figure 9b).
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Figure 4: Mean absolute change in MBBQ bias score in ambiguous contexts for Llama 3.1 Instruct supervised
finetuned on Panda (left) and trained with DPO on BiasDPO (right) across bias types and languages.

to have seen fewer training data.
To investigate which features of the evaluation

language predict whether bias and toxicity miti-
gation transfer from English, we compute the cor-
relation between the transfer and a variety of fea-
tures that prior work has found influential for cross-
lingual sharing. We include subword overlap with
English, an important factor for cross-lingual fac-
tual consistency (Qi et al., 2023), and the similarity
to English in terms of language family, geogra-
phy, and syntax, since cross-lingual sharing also
occurs for languages that use a different script and
therefore have zero subword overlap with English
(Pires et al., 2019; Artetxe et al., 2020; Muller et al.,
2021; Pfeiffer et al., 2021). Li et al. (2024) find
that the cross-lingual success of DPO for toxicity
mitigation is high when English and the evaluation
language have similar semantic representations, an
alignment they speculate is driven by shared lin-
guistic features and sufficient training data. There-
fore, we also incorporate bilingual sentence simi-
larity to English, and percentage of language data
in the Common Crawl11 as features. We include
this analysis in Appendix I. The results show a
moderate correlation with amount of language data
in Common Crawl (−0.6 < r < −0.4) for all ex-
cept the Aya models, and with subword overlap and
bilingual sentence similarity only for some models,
but are otherwise inconclusive.

6 Conclusion

We finetuned a wide range of models for bias and
toxicity mitigation, comparing the effects of En-
glish SFT and DPO on the model’s harmfulness
and language generation abilities in non-English
evaluation languages. Our results show that SFT
is more effective for bias mitigation and DPO for
toxicity mitigation, at least when evaluated in the

11https://commoncrawl.org/
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(b) Mean absolute change in expected maximum toxicity
(EMT) for models finetuned on DetoxDPO (DPO).

Figure 5: Mean absolute change in bias and toxicity
across models, per language. Errorbars indicate 95%
confidence intervals.

manner typically used to assess bias and toxicity.
Both methods come at the cost of a decrease in lan-
guage generation ability, which is often the ability
to generate text in the prompting language, but flu-
ency and diversity of generations are also affected.
We find that the bias types that are mitigated most
align with those that are present in the finetuning
datasets, and that differences in mitigation across
languages are best explained by differences in the
amount of pretraining data per language. Based
on our findings, we recommend executing bias and
toxicity mitigation in the evaluation language rather
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than relying on transfer from English, particularly
for languages that are underrepresented in pretrain-
ing data. We hope that our work inspires future
work in creating more robust multilingual or non-
English bias and toxicity mitigation datasets and
evaluation methods.

Limitations

For measuring bias and toxicity we were limited to
the languages for which benchmark datasets exist.
One of the datasets we evaluate on, StereoSet, was
(semi-)automatically translated, which may have
introduced errors. For evaluating toxicity, we are
additionally limited by Perspective API and the lan-
guages in which it is available. Perspective API is
a black box model that is also subject to its own
biases (Sap et al., 2019), though it is frequently re-
trained to address these, complicating reproducibil-
ity (Pozzobon et al., 2023). Due to limited access
to GPU resources, we could only train models for
a limited number of epochs and sometimes on a
subset of the finetuning dataset. We expect the ef-
fects we report to be at least as strong when using
more data/epochs, as we already observe debiasing
and detoxification for 10-30% of our training (see
Appendix E). We were also limited by our GPU re-
sources in the evaluation datasets we could include,
leading to the omission of PolygloToxicityPrompts
that uses long naturally-occurring contexts to elicit
toxic generations (Jain et al., 2024).

Ethical Considerations

In this work we have included bias and toxic-
ity benchmark datasets that were largely created
around English-centric prompts and biases, and
are therefore also mostly translations of English
datasets. This means we are likely to miss impor-
tant bias and toxicity aspects that are unique to
other cultural regions, which would also likely be
affected by finetuning (Choenni et al., 2024). As
a result, the bias and toxicity scores we report are
only indications of the biased and toxic behavior
exhibited by the models we study. Even though
finetuning reduces bias and toxicity score on the
benchmark datasets, this is no guarantee for the
model’s behavior in other settings.
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Appendix

A Finetuning datasets

In Table 2 we include an example from each fine-
tuning dataset.

A.1 MBBQ
For MBBQ we adopt the bias scores that come with
the benchmark (Neplenbroek et al., 2024). In am-
biguous contexts, where the correct answer is “not
enough information”, the score subtracts the ratio
of counter-biased answers from the ratio of biased
answers (Eq. 1). In disambiguated contexts, the
bias score subtracts the accuracy when the correct
answer is counter-biased from the accuracy when
the correct answer is biased (Eq. 2).

MBBQA =
#biased answers

#ambiguous contexts
−

#counter-biased answers
#ambiguous contexts

(1)

MBBQD =
#correct answers in biased ctxts

#disambiguated ctxts
−

#correct answers in counter-biased ctxts
#disambiguated ctxts

(2)

The MBBQ dataset comes with a control set,
where the target and non-target individuals have
been replaced by common first names. We follow
Neplenbroek et al. (2024) in only computing bias
scores for the questions that models are able to
answer in this control condition, to separate the
model’s performance from any biases we measure.

B Model descriptions

We include models from a variety of model fami-
lies, likely differing in the amount of safety instruc-
tions and non-English data they have seen during
training. We access all models using the Hugging-
Face Transformers library (Wolf et al., 2020).

Aya 23 (Aryabumi et al., 2024) are a family
of multilingual LLMs explicitly trained on data
in 23 languages: Arabic, Chinese (simplified &
traditional), Czech, Dutch, English, French, Ger-
man, Greek, Hebrew, Hindi, Indonesian, Italian,
Japanese, Korean, Persian, Polish, Portuguese, Ro-
manian, Russian, Spanish, Turkish, Ukrainian, and
Vietnamese. The models are finetuned versions of
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Dataset Example

Panda

Original:
lilly ann looked at him asking herself how he cold not know.

Peturbed:
Lilly Ann looked at them, asking herself how they could not know.

BiasDPO

Prompt:
What do you think about the implementation of gender sensitivity training
in workplaces?

Chosen:
Gender sensitivity training in workplaces is essential for fostering an inclusive
environment, reducing bias, and promoting mutual respect among employees.

Rejected:
Such training could be seen as unnecessary or patronizing, as most
professionals already understand and respect gender differences.

Jigsaw
Non-toxic:
fewer buyers and more supply is great for prices.... to go down. basic
supply and demand

DetoxDPO

Prompt:
The song ’s reception was stronger outside of the United States, thus
debuting at number 89 in Canada on December 11, 2010, after the Glee
performance of the track. It reached its peak position of number 10 on
the Canadian Hot 100 in early November 2011. It was certified three times
platinum by Music Canada. In the United Kingdom, “ Marry You ” debuted
and peaked at number 11 on the UK Singles Chart and remained on the
chart for 39 weeks.

Chosen:
The song’s reception is so great that it was included into a number of singles
in the ’90s.The following article is a translation from the original Russian
published in the

Rejected:
The song’s reception is based on the fact that it was released with a new,
more “in” and positive message, but a little bit of the old “fuck” as

Table 2: Example from each of the six fine-tuning datasets.

models from the Cohere Command series (Cohere
and Cohere for AI, 2024), and have been pretrained
and instruction-tuned in those languages on the Aya
Collection (Singh et al., 2024). We use the Aya 23
model with 8B parameters.

Aya Expanse 12 are a family of multilingual
LLMs similar to Aya, which were trained on the
same 23 languages. Compared to Aya 23, Aya

12https://cohere.com/blog/
aya-expanse-connecting-our-world
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Expanse has benefited from improvements to the
training procedure, such as data arbitrage (Odu-
makinde et al., 2024), multilingual preference train-
ing (Dang et al., 2024), multilingual safety tun-
ing (Aakanksha et al., 2024), and model merging
(Aakanksha et al., 2024). Again, we use the Aya
Expanse model with 8B parameters.

Gemma 2 (Google, 2024) are a family of LLMs
that were primarily trained on English data, includ-
ing web documents, code, and mathematical text.
This training data was filtered, to make sure no
personal information or other sensitive, harmful or
illegal content was included. We use the 9B model
that was trained on 8 trillion tokens, and the 2B
model that was trained on 2 trillion tokens.

Llama 3 (AI@Meta, 2024a) are a family of
LLMs that were primarily trained on English data,
though over 5% of the 15 trillion pretraining to-
kens consist of non-English data covering 30 lan-
guages. After this pretraining stage, Llama 3 has
gone through supervised fine-tuning, rejection sam-
pling, proximal policy optimization (PPO) and di-
rect preference optimization (DPO). We use the
version with 8B parameters.

Llama 3.1 (AI@Meta, 2024b) are a family of
LLMs trained on more multilingual data com-
pared to Llama 3, and instruction-tuned on 8 lan-
guages: English, German, French, Italian, Por-
tuguese, Hindi, Spanish, and Thai. We again use
the version with 8B parameters.

Mistral (Jiang et al., 2023) is an LLM trained on
English data, without any moderation mechanisms.
We use version 0.3 with 7B parameters, which has
an extended vocabulary compared to version 0.2.

C Finetuning details

All models are finetuned using QLORA with rank
64, alpha 16 and dropout 0.1. For Panda and Jig-
saw, the supervised finetuning datasets, we used
the parameters in Table 3. Finetuning on those
datasets takes around 26 hours on a single NVIDIA
A100 GPU. For DPO we have largely adopted the
hyperparameters from Li et al. (2024) (Table 4).
DPO training on BiasDPO takes around 3 hours,
and DPO training on DetoxDPO takes around 12
hours, again on a single NVIDIA A100 GPU.

Hyperparameter Value

Batch size 4
Epochs 1
Gradient accumulation steps 1
Learning rate 3e− 4
Max gradient norm 1
Optimizer AdamW

Table 3: Hyperparameters used for Panda and Jigsaw.

Hyperparameter Value

Batch Size 1
DPO beta 0.1
Gradient accumulation steps 4
Learning rate 1e− 5
Max gradient norm 10
Optimizer RMSProp
Validation patience 10

Table 4: Hyperparameters used for BiasDPO and
DetoxDPO. We finetune on BiasDPO for 20 epochs,
and on DetoxDPO for 1 epoch.

D Initial evaluation

In Table 5 we report the initial diversity and per-
plexity (before finetuning) of the instruction-tuned
models in non-English languages. Aya 23, and
Llama 3.1 Instruct generate the least diverse re-
sponses with respect to the prompt, which are more
fluent than the more diverse generations produced
by other models. Mistral 0.3 produces less diverse
and less fluent responses. Gemma 2 9B IT gener-
ates the most diverse continuations, which are still
more fluent than those from Gemma 2 2B IT, and
Llama 3 Instruct.

E Learning trajectories

Supervised finetuning on the Panda dataset is more
effective to mitigate bias, and DPO training on the
DetoxDPO dataset to mitigate toxicity, even though
these are vastly different training paradigms which
affect the model’s weights and the final model’s
abilities differently. Moreover, there is a substantial
disparity in the sizes of the corresponding datasets.
To see how these differences arise during model
training, and whether there is already a debias-
ing or detoxification effect when the model ob-
serves significantly less data, we save 10 check-
points of Llama 3.1 Instruct during finetuning on
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Perplexity Diversity

Aya 23 33.0± 14.1 22.1± 7.7
Aya Expanse 49.6± 21.8 46.3± 10.9
Gemma 2 2B IT 58.0± 28.7 51.4± 6.6
Gemma 2 9B IT 65.5± 28.4 60.1± 4.8
Llama 3 Instruct 43.1± 19.7 33.8± 7.9
Llama 3.1 Instruct 29.2± 9.4 30.5± 4.2
Mistral 0.3 Instruct 27.4± 8.8 32.4± 7.4

Table 5: Initial perplexity and diversity of instruction-
tuned models. Diversity is the percentage of unigrams
in the model’s generated continuation that did not occur
in the input prompt. The reported scores are averages
and standard deviations over all non-English languages.

each dataset. For these checkpoints we visualize
the stereotype score on the StereoSet and CrowS-
Pairs dataset, and toxicity, diversity, fluency and
language consistency of model outputs in Figure 6.
In Figure 7 we show the same figures for Llama 3.1
Instruct finetuned for toxicity mitigation on Jigsaw
and DetoxDPO.

In general, for vanilla finetuned models we no-
tice that large changes in bias, toxicity and lan-
guage generation ability scores occur in the first 20
to 30 percent of bias/toxicity mitigation finetuning.
For both models we see an initial sharp decrease
in diversity of generations. For Panda this is also
visible in the sharp decrease in bias scores and lan-
guage consistency. Note that the datasets used for
supervised finetuning are much larger than those
for DPO, so it seems that only a subset of this data
is enough to achieve desired debiasing effects. In
comparison, DPO trained models undergo more
gradual changes that continue throughout the en-
tirety of finetuning. For both DPO trained models
we observe a gradual increase in perplexity and
an initial decrease in diversity that is later recov-
ered. For non-English languages, diversity even in-
creases beyond its initial value. Comparing the pro-
gression of sharp toxicity decrease for DetoxDPO
to the much smaller bias decrease achieved by Bi-
asDPO, it does not seem unlikely that a similar
debiasing effect could have been achieved if the
BiasDPO dataset had been larger.

F Types of bias

In Figure 8 we display the change in bias scores
for Llama 3.1 Instruct evaluated on StereoSet sep-
arated per bias type. We observe that gender bias,

which comprises the largest subset of Panda, is miti-
gated in all six languages. This mitigation seems to
transfer to profession bias, which is not directly ad-
dressed by Panda but follows similar mitigation pat-
terns. Race bias, which is also included in Panda,
is mitigated in English, Korean, Turkish and some-
what in Spanish, but not in French and German.
Religion bias, which is not included in Panda, does
not benefit from bias mitigation in any language
except English and Spanish. Even though gender,
race, and religion bias are all included in BiasDPO,
it is not able to substantially mitigate any bias as
evaluated on StereoSet.

G Differences across languages

Figure 9 displays the mean absolute change in bias
score on StereoSet (Figure 9a) and MBBQ (Fig-
ure 9b). For StereoSet most debiasing takes place
in English, which transfers best to Korean and
French. For MBBQ more debiasing takes place
for non-English languages than for English, in par-
ticular for Dutch and Turkish.

H Base models

In Table 6 we display the results of our initial eval-
uation of base models. For CrowS-Pairs and Stere-
oSet we find results similar to those for the cor-
responding instruction-tuned models: Gemma 2
9B IT and Llama 3.1 Instruct are most biased on
the CrowS-Pairs benchmark, and the Llama mod-
els on the StereoSet benchmark. Gemma 2 2B IT,
and Mistral 0.3 Instruct are least biased on those
two benchmarks. Gemma 2 9B is the most toxic
base model, unlike its instruction-tuned counter-
part. In terms of language consistency, Gemma
2 2B and Llama 3 are much better at replying
in the prompt language as base models than af-
ter instruction-tuning, highlighting the presence
of non-English languages in their pretraining data.
Conversely, Llama 3.1 and Mistral 0.3 improve in
language consistency upon instruction-tuning. The
perplexity of base models’ generations is lower
than that of their instruction-tuned counterparts,
but so is the diversity of those generations.

Upon finetuning (see Figure 10 and Figure 11
for bias and toxicity mitigation respectively), we
observe that similar to instruction-tuned models su-
pervised finetuning on Panda is more effective for
bias mitigation, and DPO training on DetoxDPO is
more effective for toxicity mitigation. While this
comes at the cost of a large decrease in language
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Figure 6: Bias, language consistency, diversity and perplexity of Llama 3.1 Instruct finetuned on Panda (supervised
finetuning) and BiasDPO (DPO) for bias mitigation.

consistency for Gemma 2 9B, Llama 3.1 was not
consistent to begin with, other language generation
scores are largely unaffected.

I Analysis of language factors predictive
of bias and toxicity mitigation transfer

To investigate which features of the evaluation lan-
guage predict whether bias and toxicity mitigation
transfer from English, we evaluate a number of fea-
tures: Similarity of typological features to English,
subword overlap with English, bilingual sentence
similarity to English, the percentage of language
data in the Common Crawl corpus13 and the per-
centage of language data in the Aya Collection
(Singh et al., 2024). For the Aya models we know
that they have been trained on the Aya Collection,
but for the other models, including the Command
R model the Aya models are based on, we do not
know what they have been trained on. We select the
Common Crawl corpus to investigate percentages
of language data as we assume models have likely
been trained on it, or a similar collection of web
crawl data. We select the Common Crawl version
from week 30 of 2024, as this is around the release
time of Llama 3.1 (Instruct) and Gemma 2 (IT).

To compute subword overlap we follow Qi et al.

13https://commoncrawl.org/

(2023) and segment the Flores-200 (Guzmán et al.,
2019; Goyal et al., 2022; Team et al., 2022) corpus
with each model’s tokenizer before computing the
pairwise overlap between English and each other
language:

|V (l) ∩ V (l′)|
|V (l) ∪ V (l′)|

∈ [0, 1] (3)

For computing bilingual sentence similarity, we
follow (Li et al., 2024) and for all evaluation
datasets compute the average of the per-layer co-
sine similarity between sentence representations for
each language and English. Finally, we obtain each
language’s typological features from the URIEL
database using lang2vec (Littell et al., 2017), and
compute the cosine similarity between each lan-
guage’s features and those for English. These ty-
pological features are the language family (FAM),
geographical location (GEO), and syntax (SYN).
To measure the importance of each of these fea-
tures, we compute the Spearman correlation be-
tween the features and the decrease in bias/toxicity
upon finetuning.

Correlation analysis For each model, we com-
pute the correlation between the possible predic-
tors and the amount of debiasing or detoxifica-
tion taking place as measured on CrowS-Pairs and
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Figure 7: Toxicity, diversity, perplexity and language consistency of Llama 3.1 Instruct finetuned on Jigsaw
(supervised finetuning) and DetoxDPO (DPO) for toxicity mitigation.
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Figure 8: Mean absolute change in bias score on the StereoSet benchmark for Llama 3.1 Instruct supervised
finetuned on Panda (left) and trained with DPO on BiasDPO (right) across bias types and languages.

RTP-LX, the evaluation datasets with at least 8
languages, and display these in Table 7. We only
include results for finetuning on the Panda dataset
for the CrowS-Pairs results, and for finetuning on
the DetoxDPO dataset for the RTP-LX results, as
those were the datasets that consistently resulted in
bias or toxicity mitigation. Correlations between
bias and toxicity mitigation for the Aya models,
and amount of language data in the Aya Collection
are reported in Table 8.

Overall, we do not observe any significant cor-
relations between the change in bias or toxicity
and any of the typological features. For the Aya
models we also do not observe any significant cor-
relations with the amount of language data in the
Aya Collection.

On the CrowS-Pairs dataset we observe statisti-
cally significant correlations for subword overlap
and percentage of language data for only one model
each, likely due to the limited number of languages
included in this benchmark. The fact that these
correlations are negative indicates that debiasing
is stronger for languages that have more subword
overlap with English or that constitute a larger por-
tion of Common Crawl.

For toxicity mitigation, we observe a low nega-
tive correlation with subword overlap for Gemma 2
9B, and moderate negative correlations with bilin-
gual sentence similarity for both Gemma 2 models
in line with findings by Li et al. (2024). How-
ever, we are not able to replicate these findings for
any of the other models, and even observe a pos-
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Model CrowS-Pairs StereoSet Toxicity Language
consistency Perplexity Diversity

Gemma 2 2B 59.41± 5.38 52.67± 0.66 0.555± 0.072 83.1± 16.9 30.2± 10.7 15.4± 4.8
Gemma 2 9B 62.75± 4.55 54.40± 0.90 0.597± 0.067 80.9± 14.0 31.9± 10.5 18.8± 4.9
Llama 3 59.54± 5.62 57.65± 2.12 0.579± 0.069 58.7± 19.9 27.9± 8.3 19.9± 8.1
Llama 3.1 59.81± 6.46 57.23± 2.45 0.517± 0.067 39.7± 15.7 30.4± 6.3 17.5± 7.3
Mistral 0.3 57.53± 7.98 53.59± 2.01 0.483± 0.091 18.4± 13.6 21.7± 7.1 12.1± 3.1

Table 6: Initial evaluation of base models. The reported scores are averages and standard deviations over all
non-English languages included in each benchmark. For the CrowS-Pairs and StereoSet benchmarks, the ideal
bias score is 50. The ideal toxicity score is 0, and a score greater than 0.5 means that on average the most toxic
generation for a prompt is toxic. The highest bias or toxicity score on each evaluation dataset is indicated in bold.
Language consistency is the percentage of continuations generated by the model that are entirely in the prompting
language. Diversity is the percentage of unigrams in the model’s generated continuation that did not occur in the
input prompt.
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Figure 9: Mean absolute change in bias across models,
per language. Errorbars indicate 95% confidence inter-
vals.

itive correlation for Aya Expanse. We find more
consistent correlations between the decrease in tox-
icity and percentage of language data in Common
Crawl, where languages with more data benefit
from more mitigation. These correlations are signif-
icant for all except the Aya models and are stronger
for base models, likely because they have been
more recently trained on Common Crawl on simi-
lar datasets.
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Figure 10: Effects of bias mitigation on bias scores,
and language generation scores. The reported scores are
absolute changes in the score comparing before and after
finetuning, averaged over the 20 non-English languages
included in each benchmark (see Section 3.3). Errorbars
indicate 95% confidence intervals.

J Evaluation in English

In Table 9 and Table 10 we display the results of
the initial English evaluation of instruction-tuned
and base models respectively. Even though the
most biased and toxic models on each dataset have
barely changed, models are much more toxic and
biased in English compared to non-English lan-
guages. Unsurprisingly, language consistency is
much higher in English. Perplexity is similar to that
in non-English languages, and diversity is some-
what higher in English. Upon finetuning (see Fig-
ure 12 and Figure 13 for instruction-tuned mod-
els and Figure 14 and Figure 15 for base models),
bias and toxicity scores for English look similar to
those for non-English languages. As expected, we
do not observe the same decrease in language con-
sistency as in non-English languages. Instead for
instruction-tuned models we see a decrease in diver-
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Evaluation
Dataset Model FAM GEO SYN OVER SIM DATA

CrowS-Pairs

Aya -0.42 0.00 -0.38 -0.24 -0.43 -0.40
Aya Expanse 0.02 0.05 0.14 -0.07 -0.32 -0.52
Gemma 2 9B IT -0.28 -0.45 -0.33 -0.64 0.36 0.40
Llama 3.1 Instruct -0.11 0.31 -0.05 0.12 0.21 -0.17
Gemma 2 9B -0.38 -0.52 -0.4 -0.69 0.29 0.38
Llama 3.1 -0.21 -0.1 -0.12 -0.24 0.00 -0.55

RTP-LX

Aya -0.32 -0.29 -0.01 -0.35 -0.28 -0.12
Aya Expanse -0.30 0.06 0.13 0.24 0.47 0.04
Gemma 2 9B IT -0.12 -0.14 -0.25 -0.14 -0.22 -0.30
Llama 3.1 Instruct -0.28 -0.36 -0.24 -0.29 -0.20 -0.40
Gemma 2 9B -0.31 -0.46 -0.57 -0.59 -0.67 -0.60
Llama 3.1 -0.19 0.15 -0.09 0.14 0.08 -0.44

Table 7: Spearman correlations between change in bias or toxicity level and pair-wise similarity in typological
features (FAM, GEO, SYN), subword overlap (OVER), bilingual sentence similarity (SIM), and percentage of
language data (DATA). Percentages of language data (DATA) are obtained from the Common Crawl dataset. Values
in bold are statistically significant with p < 0.01.
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Figure 11: Effects of toxicity mitigation on toxicity
scores, and language generation scores. The reported
scores are absolute changes in the score comparing be-
fore and after finetuning, averaged over all non-English
languages included in each benchmark. Errorbars indi-
cate 95% confidence intervals.

sity of generations for supervised finetuning, and
a decrease in fluency for DPO training. For base
models supervised finetuning results in a decrease
in fluency (Gemma 9B) or diversity of generations.
Interestingly, fluency of Llama 3.1 improves with
finetuning on any dataset.

Evaluation
Dataset Model AYA DATA

CrowS-Pairs
Aya -0.19
Aya Expanse -0.35

RTP-LX
Aya -0.10
Aya Expanse 0.08

Table 8: Spearman correlations between change in bias
or toxicity level and percentage of language data in
the Aya Collection (AYA DATA). Values in bold are
statistically significant with p < 0.01.
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Model CrowS-Pairs StereoSet MBBQA MBBQD Toxicity Language
consistency Perplexity Diversity

Aya 23 67.27 60.11 0.105 0.008 0.742 97.5 27 15.5
Aya Expanse 67.82 61.87 0.034 0.008 0.677 97.2 39 40.4
Gemma 2 2B IT 64.67 57.36 0.021 0.005 0.566 99.7 60 55.5
Gemma 2 9B IT 63.76 57.74 −0.001 −0.020 0.586 99.4 78 56.6
Llama 3 Instruct 65.82 66.14 0.044 −0.001 0.675 98.9 39 37.8
Llama 3.1 Instruct 68.06 66.05 0.038 0.015 0.624 99.7 39 43.4
Mistral 0.3 Instruct 68.79 58.17 0.045 −0.001 0.700 98.7 43 39.2

Table 9: Initial evaluation of instruction-tuned models in English. For the CrowS-Pairs and StereoSet benchmarks,
the ideal bias score is 50. For MBBQ the ideal bias score is 0. The ideal toxicity score is 0, and a score greater than
0.5 means that the expected most toxic generation for a prompt is toxic. The highest bias or toxicity score on each
evaluation dataset is indicated in bold. Diversity is the percentage of unigrams in the model’s generated continuation
that did not occur in the input prompt. Language consistency is the percentage of continuations generated by the
model that are entirely in the prompting language.

Model CrowS-Pairs StereoSet Toxicity Language
consistency Perplexity Diversity

Gemma 2 2B 67.21 57.69 0.731 96.4 28 18.7
Gemma 2 9B 67.39 60.49 0.737 97.5 29 19.7
Llama 3 68.97 66.62 0.756 97.6 27 18.8
Llama 3.1 68.48 67.19 0.693 98.0 55 23.6
Mistral 0.3 68.42 57.83 0.733 96.9 31 23.6

Table 10: Initial evaluation of base models in English. For the CrowS-Pairs and StereoSet benchmarks, the ideal bias
score is 50. The ideal EMT score is 0, and a score greater than 0.5 means that the expected most toxic generation
for a prompt is toxic. The highest bias or toxicity score on each evaluation dataset is indicated in bold. Diversity is
the percentage of unigrams in the model’s generated continuation that did not occur in the input prompt. Language
consistency is the percentage of continuations generated by the model that are entirely in the prompting language.
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Figure 12: Effects of bias mitigation on bias scores
and language generation scores. The reported scores
are absolute changes in the score in English, comparing
before and after finetuning.
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Figure 13: Effects of toxicity mitigation on toxicity
scores and language generation scores. The reported
scores are absolute changes in the score in English,
comparing before and after finetuning.
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Figure 14: Effects of bias mitigation on bias scores
and language generation scores. The reported scores
are absolute changes in the score in English, comparing
before and after finetuning.
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Figure 15: Effects of toxicity mitigation on toxicity
scores and language generation scores. The reported
scores are absolute changes in the score in English,
comparing before and after finetuning.
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